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the millions. Conventional optimization approaches prove
inadequate for such large-scale optimization problems.The focus of this work is on the development of large-scale numer-

ical optimization methods for optimal control of steady incompress- The development of numerical optimization methods
ible Navier–Stokes flows. The control is affected by the suction or for optimal flow control is built on a mathematical founda-
injection of fluid on portions of the boundary, and the objective tion that continues to be enlarged. A number of basic
function represents the rate at which energy is dissipated in the fluid.

results concerning existence and regularity of solutions toWe develop reduced Hessian sequential quadratic programming
the continuous problem, as well as error estimates for itsmethods that avoid converging the flow equations at each iteration.
numerical approximation, have been established mostlyBoth quasi-Newton and Newton variants are developed and com-

pared to the approach of eliminating the flow equations and vari- over the last decade; see the article by Gunzburger et al.
ables, which is effectively the generalized reduced gradient method. for a good overview [13].
Optimal control problems are solved for two-dimensional flow This rich mathematical basis, the increasing power of
around a cylinder and three-dimensional flow around a sphere. The

computers, and the maturation of numerical methods forexamples demonstrate at least an order-of-magnitude reduction in
the flow simulation itself motivate the desire to developtime taken, allowing the optimal solution of flow control problems in

as little as half an hour on a desktop workstation. Q 1997 Academic Press numerical optimization methods for solution of optimal
flow control problems. The latter forms the subject of this
article. Here, we focus on a prototype problem of optimal

1. INTRODUCTION control of fluids governed by the steady incompressible
Navier–Stokes equations. The control is affected by the

Flow control has had a long history since Prandtl’s early suction or injection of fluid on portions of the boundary,
experiments demonstrated the feasibility of preventing and the objective function represents the rate at which
flow separation by sucking fluid away from the boundary energy is dissipated in the fluid. We define the mathemati-
layer in a diverging channel [23]. Since then, much experi- cal model in Section 2, and in Section 3 we develop reduced
mental work has been devoted to establishing the techno- Hessian sequential quadratic programming (SQP) meth-
logical basis for flow control, and certain flow control prob- ods that exploit the structure of the optimality conditions
lems have become amenable to analytical investigation, and avoid converging the flow equations at each optimiza-
albeit often with simplifying assumptions; see the review tion iteration. Both quasi-Newton and Newton variants
by Gad-el-Hak [8]. are developed. The SQP methods are compared in Section

Recently, interest has increased in optimal flow control of 4 to the approach of eliminating the flow equations and
viscous fluids, that is, the determination of optimal values variables, which is effectively the generalized reduced gra-
of controls based on the governing partial differential equa- dient (GRG) method. The examples demonstrates at least
tions of the fluid, i.e., the Navier–Stokes equations [20]. an order-of-magnitude reduction in time taken, allowing
These problems are among the most challenging optimiza- the solution of some two-dimensional optimal flow control
tion problems in computational science and engineering. problems in around a half hour, and three-dimensional
They owe their complexity to their being constrained by nu- problems in reasonable time.
merical approximations of the Navier–Stokes equations.
These constraints are highly nonlinear and can number in 2. A PROBLEM IN OPTIMAL CONTROL OF

NAVIER–STOKES FLOWS
1 Supported in part by the Engineering Design Research Center, an
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231
0021-9991/97 $25.00

Copyright  1997 by Academic Press
All rights of reproduction in any form reserved.



232 GHATTAS AND BARK

bounding surface G. We distinguish two possibly disjoint Clearly as « R 0, we recover the original equation; in fact,
the error in the derivative of u is of order « [11]. Byregions of the boundary: G0, on which the velocity is speci-

fied to be zero (i.e., the no-slip condition is specified), and introducing the pressure in the mass equation, we can
eliminate it from the problem by solving for p in (2.9) andGc, on which velocity controls are applied. Thus G 5

G0 < Gc. To approximate the farfield velocity condition, substituting the resulting expression into (2.3).
In general it is not possible to solve infinite dimensionalwe truncate the domain of the problem with an inflow

boundary G1 on which is enforced the freestream velocity optimization problems such as (2.1)–(2.8) in closed form.
Thus, we seek numerical approximations. Here, we use auy, and an outflow boundary G2 on which a zero-traction

condition is maintained. The flow domain is denoted as V. Galerkin finite element method. Let the Sobolev subspace
U h be the space of all C0 continuous piecewise polynomialsLet us represent the velocity vector, pressure, stress tensor,

density, and viscosity of the fluid by, respectively, u, p, s, that vanish on G1 and G0, and define the Sobolev subspace
V h similarly, with the added requirement that the functionsr, and e.

The optimal control problem is to find the velocity con- also vanish on Gc. By restricting the velocity and control
vectors to U h, the infinite-dimensional optimization prob-trol function uc acting on Gc and the resulting fluid field

variables that minimize the rate of energy dissipation, sub- lem (2.1)–(2.8) becomes finite-dimensional. We ‘‘triangu-
late’’ the computational domain to obtain Ns nodes in Vject to the Navier–Stokes equations. Mathematically, the

problem is to minimize and on G2, Nc nodes on Gc , and N1 nodes on G1. Correspond-
ing to a node i with coordinates xi, we have the compactly
supported finite element basis function fi(x). Let N repre-e

2
E

V
(=u 1 =u T ) : (=u 1 =u T) dV, (2.1) sent the total number of unknown nodal velocity vectors

in the optimal control problem, i.e., N 5 Ns 1 Nc. Thus,

subject to U h 5 span hf1, ..., fN j,

V h 5 span hf1, ..., fNs j,
r(u ? =)u 2 = ? s 5 0 in V, (2.2)

Furthermore, we associate with each node in V, on G2, and
s 5 2Ip 1

e
2

(=u 1 =uT) in V, (2.3) on Gc the nodal velocity vector ui . The unknown velocities,
and hence optimization variables, consist of the nodal state

= ? u 5 0 in V, (2.4) velocities ui, i 5 1, ..., Ns and the nodal control velocities
ui, i 5 Ns 1 1, ..., N. Let u h

y and u h
c be the finite elementu 5 0 on G0, (2.5)

interpolants of uy and uc, i.e.,
u 5 uc on Gc, (2.6)

u 5 uy on G1, (2.7) u h
c(x) 5 ON

i5Ns11
uc(xi )fi(x),

s ? n 5 0 on G2, (2.8)

and
where (=u)ij 5 ­uj/­xi, and the symbol ‘‘:’’ represents the
scalar product of two tensors, so that

u h
y(x) 5 ON1N1

i5N11
uy(xi )fi(x).

=u : =v 5 O
i,j

­ui

­xj

­vi

­xj
.

Finally, we can represent uh, the finite element approxima-
tion to the velocity field, as

Here, (2.1) is the dissipation function, (2.2) is the conserva-
tion of linear momentum equation, (2.3) is the constitutive

u h(x) 5 u h
y (x) 1 ON

i51
uifi(x),law, (2.4) is the conservation of mass (actually volume)

equation, and (2.5)–(2.8) are boundary conditions. We
eliminate the constitutive law and stress by substituting where, because of the property of finite element basis func-
(2.3) into (2.2), and we further reduce the size of the prob- tions, u h(xi ) 5 ui. We note that the control function has
lem by employing a penalty method: let us relax (2.4) by been rendered finite dimensional; the control variables are
replacing it with simply the nodal values of the control function:

ui 5 uc(xi ), i 5 Ns 1 1, ..., N.= ? u 5 2«p in V. (2.9)
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The finite element approximation of the optimal control matrices can be partitioned into blocks corresponding to
state and control variables,problem (2.1)–(2.8) can now be stated as finding u h [ U h

so that

Ke 5 FKe
ss Ke

sc

Ke
cs Ke

cc

G, K« 5 FK«
ss K«

sc

K«
cs K«

cc

G .e
2
E

V
(=u h 1 (=u h)T ) : (=uh 1 (=uh)T ) dV (2.10)

The sparsity of Ke, K«, and the Jacobian of h(u) is dictated
is minimized, subject to by the sparsity of the graph underlying the finite element

mesh. For quasi-uniform meshes, a node has a bounded
number of neighbors, so that the number of nonzeroes pere

2
E

V
(=u h 1 (=u h)T ) : (=vh 1 (=vh)T ) dV row is independent of problem size. Thus, these matrices

have O(n) nonzeroes. The constant is determined by d, by
the order of the basis functions f(x), and by the structure1

1
«
E

V
(= ? uh)(= ? vh) dV (2.11)

of the mesh, but is usually small.
The optimization problem (2.10)–(2.11) can be rewritten

1E
V

vh ? r(uh ? =)uh dV 5 0 for all vh [ V h. as follows: find us [ Rns and uc [ Rnc so that

AsuT
s Ke

ss us 1 AsuT
c Ke

ccuc 1 uT
s Ke

sc uc (2.12)The objective function (2.10) is the discrete form of the
dissipation function; the constraints (2.11) are a discretiza-

is minimized, subject totion of the variational form of the penalized conservation
of linear momentum equation.

(Ke
ss 1 K«

ss) us 1 (Ke
sc 1 K«

sc) uc 1 hs(u) 5 0. (2.13)Let us define n 5 dN as the total number of unknown
velocity components, where d is the physical dimension of
the flow, i.e., d 5 2 or 3. Let u [ Rn denote the vector of The problem (2.12)–(2.13) is characterized by n 5 ns 1 nc

unknown nodal velocity components.2 The vector u in- variables and ns nonlinear equality constraints. Both the
cludes both state and control variables and can be symboli- objective function and constraints are quadratic in the opti-
cally partitioned as mization variables. For practical problems, ns @ nc , since

the control is affected at a small number of boundary
points, while the state variables are associated with a trian-

u 5 Hus

uc
J, gulation of the flow domain. The number of degrees of

freedom of the optimization problem, i.e., the number of
variables n less the number of independent constraints ns ,

where us [ Rns represents the nodal velocities components is equal to the number of control variables and is thus
associated with the state variables, and uc [ Rnc the nodal small relative to the size of the problem. For problems of
velocities corresponding to the controls. Similarly, we can industrial interest, values as high as ns 5 O(106), nc 5
partition h(u): Rn R Rn, the discrete form of the nonlinear O(103) are desirable, although such problems are currently
convective term in (2.2), into hs(u): Rn R Rns, a component beyond the range of existing computers. We are thus in
associated with momentum equations written at nodes be- the realm of extremely large-scale, sparsely constrained
longing to state variables, and hc(u): Rn R Rnc, a control nonlinear optimization. In the next section we develop
component, associated with control nodes: SQP methods for this problem.

3. SQP METHODS
h(u) 5 Hhs(u)

hc(u)
J.

The most popular approach to solving optimization
problems that are constrained by discretized partial differ-
ential equations (PDEs) is to eliminate the constraints byAs can be seen from (2.11), h(u) is quadratic in u. Finally,

we define the matrix Ke [ Rn3n arising from the discrete solving them for the state variables, given values of the
control variables. For example, solve for us in (2.13) as aform of the viscous term, and K« [ Rn3n corresponding to

the discrete ‘‘pressure’’ term, in the momentum equation. function of uc , and substitute this into the objective (2.12).3

The state variables are thus eliminated from the problem,Both Ke and K« are symmetric positive definite. These

3 Of course, this substitution is only implicit: ones solves (2.13) numeri-2 Not to be confused with u(x) [ R3, the exact velocity field; the
distinction will be clear from the context. cally at each optimization iteration, given current values of uc .
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and we now have an unconstrained optimization problem enough so that the inner Newton linear step can be isolated
from the code.in the nc variables uc . The gradient of the objective can

We begin with some definitions. Let cs(u): Rn R Rnsbe obtained through the implicit function theorem. This
represent the residual of the discrete Navier–Stokes equa-method is essentially the GRG method, since we are satis-
tions,fying the constraints at each iteration [10].

Advantages of GRG for PDE-constrained optimization
cs(u) ; (Ke

ss 1 K«
ss)us 1 (Ke

sc 1 K«
sc)uc 1 hs(u),problems include: (i) a large reduction in size of the prob-

lem, especially when nc ! ns , as is common in optimal
and let J(u) [ Rn3n denote the Jacobian of the nonlinearcontrol or optimal design; (ii) avoiding the large, sparse
convective term h(u) with respect to the velocities u. TheHessians matrices inherent in the formulation as a con-
matrix J(u) is nonsymmetric and indefinite and can bestrained problem of the form (2.12)–(2.13), in favor of a
partitioned into state and control blocks, in the same man-small, dense Hessian, thus enabling the use of standard
ner as the viscous and pressure matrices. Note that thedense nonlinear optimization software; (iii) the ability to
sparsity structure of J(u) is identical to that of Ke. Let theuse existing PDE solution algorithms4 in eliminating the
matrix As(u) [ Rns3n represent the Jacobian of cs(u) withstate equations given values of control variables (i.e., the
respect to u. We can partition As(u) into Ass(u) [forward problem). This last advantage should not be taken
Rns3ns, the Jacobian of cs(u) with respect to us , andlightly—over the past decade, many specialized and so-
Asc(u) [ Rns3nc, the Jacobian of cs(u) with respect to uc .phisticated algorithms (e.g., multilevel methods and pre-
Explicitly,conditioned Krylov subspace methods) have been devel-

oped for solving various classes of PDEs and incorporated
As(u) 5 [Ass(u), Asc (u)],into robust software. If we retain the discrete PDEs as

constraints, the optimizer becomes responsible for con-
withverging the state equations. Thus it is not immediately

obvious how to extend sophisticated PDE solution tech- Ass(u) ; Ke
ss 1 K«

ss 1 Jss(u),
niques, such as domain decomposition methods and multi-

Asc(u) ; Ke
sc 1 K«

sc 1 Jsc(u).level preconditioners, to the optimization problem, as solu-
tion of (2.12)–(2.13) appears to require. For these reasons,
state equation elimination methods are almost universal Thus Ass(u) and Asc(u) have the same sparsity structure

as Ke
ss and Ke

sc , respectively.for PDE-constrained problems. For examples of this ap-
We define the Lagrangian function, L(u, ls), for theproach in the context of flow control, see the papers con-

optimization problem (2.12)–(2.13), astained in [12].
Nevertheless, the approach outlined in the last two para-

L(u, ls ) ; AsuT
s Ke

ss us 1 AsuT
c Ke

cc uc 1 uT
s Ke

sc ucgraphs possesses a distinct disadvantage: it requires exact
solution of the state equations at each iteration. This can

1 lT
s (Ke

ss 1 K«
ss )us 1 lT

s (Ke
sc 1 K«

sc )uc 1 lT
s hs (u),

be an onerous requirement, especially for highly nonlinear
(3.1)problems such as those governed by Navier–Stokes equa-

tions. Instead, we pursue here bona fide SQP methods for
where ls [ Rn

s is the vector of Lagrange multipliers corre-
the problem (2.12)–(2.13). SQP requires satisfaction of sponding to the state equations. Let g(u) ; Keu represent
only a linear approximation of the constraints at each itera- the gradient of the objective function (2.12). We denote
tion, thereby avoiding the need to converge them fully by Hk [ Rn3n the symmetric, indefinite Hessian matrix of
[10]. Thus, state equations are satisfied simultaneously as the kth element of h(u), and by W(ls ) [ Rn3n the symmet-
control variables are converged to their optimal values. ric, indefinite Hessian matrix of the Lagrangian function
Furthermore, we consider a special reduced Hessian SQP L(u, l) (both Hessians are with respect to u). Because
method that retains the three advantages attributed to h(u) is quadratic in u, Hk is a constant matrix. Note that
GRG in the paragraph above. In order to retain the last (Hk)ij is nonzero only when nodes i, j, and k all belong
advantage, i.e., that existing (GRG-ready) PDE solvers to the same element; it follows that the (i, j) entry of
can be used, several conditions must be met. First, the the matrix
PDE solver must be Newton-based. Second, the sensitivity
analysis capability of the PDE solver must be based on

H(l) ; Ons

k51
lk Hkan adjoint approach. Finally, the solver must be modular

is nonzero only when nodes i and j belong to the same4 With the addition of provisions for computing the gradient of the
objective function (i.e., sensitivity analysis). element. Therefore, H(l) has the same mesh-based spar-
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sity structure as the other finite element matrices (Ke, K«, problem is memory-bound, and even on large supercom-
puters one can barely afford memory for Ass , let alone theand J), as does W(l), since W(l) 5 Ke 1 H(l),

The necessary conditions for an optimal solution of the entire matrix. So sparse factorization of the KKT matrix
is not viable. One possibility is to solve (3.4) using a Krylovproblem (2.12)–(2.13) reflect the vanishing of the gradient

of the Lagrangian (3.1) and can be expressed by the set method such as the minimum residual method. However,
it is not immediately obvious how to precondition the coef-of nonlinear equations
ficient matrix.

Instead, consider the following block elimination. In the
remainder of this section, we drop the superscript k; it is3

Ke
ss Ke

sc Ke
ss 1 K«

ss

Ke
cs Ke

cc Ke
cs 1 K«

cs

Ke
ss 1 K«

ss Ke
sc 1 K«

sc 0
4 5

us

uc

ls

6 (3.2) understood that all quantities depending on u or ls are
evaluated at uk or lk

s . First, solve for ps from the last block
of equations to obtain

ps 5 2A21
ss (cs 1 Asc pc ), (3.5)

1 5
JT

ss ls

JT
sc ls

hs (u)
65 5

0

0

0
6 .

where the invertibility of Ass is guaranteed by the well-
posedness of the boundary value problem (provided of

SQP can be derived as a Newton method for solving the course that we are away from limit points). Then, substitute
optimality conditions [10]. One step of Newton’s method this expression into the first block of equations. Finally,
for (3.2) is given by solving the linear system premultiply the first block of equations by 2AT

sc A2T
ss and

add it to the second block of equations, thereby eliminating
ls . The result is a linear system that can be solved for
pc , namely3

Ke
ss 1 Hk

ss Ke
sc 1 Hk

sc Ke
ss 1 K«

ss 1 (Jk
ss )T

Ke
cs 1 Hk

cs Ke
cc 1 Hk

cc Ke
sc 1 K«

sc 1 (Jk
sc )T

Ke
ss 1 K«

ss 1 Jk
ss Ke

sc 1 K«
sc 1 Jk

sc 0
4

Wz pc 5 (AT
sc A2T

ss Wss 2 Wcs )A21
ss cs 1 AT

sc A2T
ss gs 2 gc ,

Wz ; (AT
sc A2T

ss Wss A21
ss Asc 2 AT

sc A2T
ss Wsc (3.6)

2 Wcs A21
ss Asc 1 Wcc ).5

pk
s

pk
c

lk11
s

65 25
Ke

ss uk
s 1 Ke

sc uk
c

Ke
cs uk

s 1 Ke
cc uk

c

(Ke
ss 1 K«

ss )uk
s 1 (Ke

sc 1 K«
sc )uk

c 1 hk
s 5 0,

6
Finally, the new estimate of the Lagrange multiplier vector
is recovered from(3.3)

for the increments in the state and control velocities, pk
s lk11

s 5 2A2T
ss (Wss ps 1 Wsc pc 1 gs ), (3.7)

and pk
c , and for the new multiplier estimate lk11

s , where
the superscript k indicates evaluation of a quantity at uk

which is a second-order multiplier estimate. This leads to
or lk. The state and control variables are then updated by the following algorithm.

ALGORITHM 3.1 [Newton SQP].uk11
s 5 uk

s 1 pk
s , uk11

c 5 uk
c 1 pk

c .

k 5 0; u0
s 5 u0

c 5 l0
s 5 0

Let us rewrite the Newton equations (3.3) in terms of the while i (Ak
s )T lk

s 2 gk i ? 0 and i ck
s i ? 0

symbols defined at the beginning of this section as
k 5 k 1 1
Solve (3.6) for pk

c

uk11
c 5 uk

c 1 pk
c

Find pk
s from (3.5)3

Wk
ss Wk

sc (Ak
ss )T

Wk
cs Wk

cc (Ak
sc )T

Ak
ss Ak

sc 0
4 5

pk
s

pk
c

lk11
s

65 5
2gk

s

2gk
c

2ck
s

6 . (3.4)
uk11

s 5 uk
s 1 pk

s

Find lk11
s from (3.7)

end
The major difficulty in solving this linear system is
its extremely large, sparse coefficient matrix, the Algorithm 3.1 displays a quadratic convergence rate pro-

vided that (i) at the optimal solution we are away from aKarush–Kuhn–Tucker (KKT) matrix, which is of order
(n 1 ns ) 3 (n 1 ns ). For industrial flow problems on limit or bifurcation point in the forward problem (i.e., Ass

is nonsingular); (ii) Wz is positive definite at the optimalunstructured meshes, the forward (i.e., flow simulation)
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solution; and (iii) (u0, l0
s ) is sufficiently close to the opti- forming products with submatrices of W requires work

proportional to the row dimension of the submatrix. Thus,mal solution.
The justification for the block elimination (3.5)–(3.7) it is easy to see that, beyond forming the matrix A21

ss Asc ,
the only other major effort in Algorithm 3.1 is O(ns n2

c )and the resulting Algorithm 3.1 is that there result only
two types of linear system to be solved: those involving work associated with forming Wz , and O(n3

c ) in factor-
ing Wz .Ass or its transpose as the coefficient matrix, and the system

that determines pc , (3.6), with coefficient matrix Wz . In Let us examine the connection with other SQP methods.
In fact, the block elimination (3.5)–(3.7) is identical to athe former case, these systems are ‘‘easy’’ to solve, since

they have the same coefficient matrix as that of a Newton reduced Hessian SQP method with a particular choice of
null and range space bases. This can be seen by decompos-step for the state equations. Thus any (Newton-based)

Navier–Stokes solver can be enlisted for this task, enabling ing the search direction p into two components,
the exploitation of many of the advances in solving the

p 5 Zpz 1 Ypy , (3.8)forward problem developed over the last decade (including
domain decomposition and multilevel methods). In the

in which Z [ Rn3nc is a matrix whose columns form a basislatter case, solution of (3.6) is also easy since Wz is of
for the null space of As , and Y [ Rn3ns is chosen so thatorder of the number of control variables, which under the
the matrixassumption that ns @ nc , is very small. Standard dense

factorization is therefore appropriate.
Q 5 [Z Y]When implementing Algorithm 3.1, one of course does

not invert Ass ; one instead forms the matrix A21
ss Asc by

is nonsingular, and hence Z and Y form a basis for Rn.solving, with coefficient matrix Ass , for the nc right-hand
We refer to py as the range space component, even thoughsides composed of the columns of Asc . An additional solve
strictly speaking, the columns of Y need not span the rangewith the same coefficient matrix for the right-hand side cs
space of AT

s .is necessary. Finally, (3.7) implies an additional right-hand
The range space step is completely determined by substi-side solve, but with the transpose of Ass as coefficient

tuting (3.8) into the last block of (3.4), resulting in thematrix. So each iteration of Algorithm 3.1 requires solving
ns 3 ns systema linear system with coefficient matrix Ass (the state equa-

tion Jacobian matrix) and having nc 1 1 right-hand sides,
As Ypy 5 2cs . (3.9)as well as a linear system with AT

ss as coefficient matrix
and one right-hand side. If sparse factorization of Ass is

The null space move is found by substituting (3.8) into theviable, for example for two-dimensional flows or low Rey-
first two blocks of (3.4), and premultiplying by ZT, to obtainolds number three-dimensional flows, then one iteration
the equations for pz ,of Algorithm 3.1 entails one factorization and nc 1 2 pairs

of triangular solves (compare this with full solution of the
ZT WZpz 5 2ZT (g 1 WYpy ). (3.10)flow equations, as in GRG). If quasi-uniform meshes and

nested dissection orderings are used, and if pivoting is not
The nc 3 nc matrix ZT WZ is known as the reduced Hessian

required, Ass can be factored with O(n2
s ) work in 3D and

matrix. If one chooses the nonorthogonal bases
O(n1.5

s ) work in 2D [18]. In any case, the cost of one itera-
tion of Algorithm 3.1 is a fraction of the cost of the forward
problem. On the other hand, if sparse factorization is not Z 5 F2A21

ss Asc

I
G , (3.11)

practical, and an iterative method must be used, one is
faced with nc 1 2 solves. When nc is large, it becomes

andimperative to use iterative methods tailored to multiple
right-hand sides; it also pays to invest in a good precondi-
tioner, since its construction can be amortized over the Y 5 FI

0
G (3.12)

right-hand sides. In particular, domain decomposition
methods tailored to multiple right-hand sides appear to be
attractive [6]. then one sees that the null space step (3.10) is identical to

(3.6), the equation for determining the move in the controlOnce the matrix A21
ss Asc is created, forming its products

with submatrices of W presents no difficulty. Recall that variables. Indeed, the coefficient matrix of (3.6), Wz , is
exactly the reduced Hessian ZT WZ and is therefore atW has O(n) nonzeroes and sparsity structure dictated by

the underlying finite element mesh. In particular it is stored least positive semidefinite in the vicinity of a minimum.
The state variable update (3.5) is comprised of the stateusing the same (sparse compressed row) data structure

that all the other finite element matrices use. Therefore equation Newton step, i.e., (3.9) using the range basis
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(3.12), as well as the null space contribution 2A21
ss Asc pz , Algorithm 3.2 requires only two solves involving Ass per

where pz ; pc . The choice of bases (3.11) and (3.12) is iteration, as compared with nc 1 2 in Algorithm 3.1. This
known as a ‘‘coordinate basis’’ and has been applied to represents a substantial reduction in effort when iterative
optimization problems in inverse heat conduction [19], solvers are used and when nc is significant. Of course,
structural design [24, 25], and compressible flow [21, 22]. Algorithm 3.2 will generally require more iterations to
SQP methods using these bases have been analyzed in [2, converge than Algorithm 3.1, since it does not compute
7, 26], among others. exact curvature information. The first of the two linear

As mentioned earlier, one of the difficulties with Algo- solves has Ass as its coefficient matrix, and we term it
rithm 3.1, i.e., the bona fide Newton method, arises when the state variable update. It comprises two components: a
iterative solution of systems involving Ass is necessary; in Newton step on the state equations (2A21

ss cs ), and a first-
this case the benefit from solving nc 1 2 systems with the order change in the states due to a change in the control
same coefficient matrix but different right-hand side is not variables (2A21

ss Asc pc ). The second linear system to be
as extensive as with sparse LU factorization. Might it be solved at each iteration has AT

ss as its coefficient matrix,
possible to give up the (local) quadratic convergence guar- and is termed the adjoint step, because of parallels with
antee in exchange for the need to solve fewer systems adjoint methods for sensitivity analysis [14, 15]. The steps
involving Ass at each iteration? of this algorithm are almost identical to a quasi-Newton

The answer turns out to be affirmative if we consider a GRG method; the major difference is that in GRG the
quasi-Newton, rather than a true Newton, method. Con- state equations are fully converged at each iteration, while
sider (3.6), the control variable equation. Its coefficient in Algorithm 3.2 essentially only a single Newton step is
matrix is the reduced Hessian Wz . This matrix is positive carried out.
definite at a strict local minimum, as well as being small Algorithms 3.1 and 3.2 as presented above are not suffi-
(nc 3 nc ) and dense. It makes sense to recur a quasi- cient to guarantee convergence to a stationary point from
Newton approximation to it; thus we can avoid the con- arbitrary initial points. It is well known that for the forward
struction of the matrix A21

ss Asc . By replacing Wz with its problem, i.e., solving the discrete Navier–Stokes equa-
quasi-Newton approximation, Bz , it is easy to see that tions, Newton’s method is only locally convergent. The
(3.5)–(3.7) now entail only five solutions of systems with diameter of the ball of convergence is of the order of the
Ass or its transpose as coefficient matrix. This is a big inverse of the Reynolds number that characterizes the flow
reduction, especially for large nc . However, we can do even [11]; better initial guesses are thus required as the Reynolds
better. At the expense of a reduction from one-step to

number increases. The optimal control problem should betwo-step superlinear convergence [2], we ignore the sec-
no easier to converge than the forward problem, given thatond-order terms (those involving submatrices of W) on
the flow equations form part of the first-order optimalitythe right-hand side of (3.6). Furthermore, we reduce (3.7)
conditions. This suggests continuation methods, which areto a first-order Lagrange multiplier estimate by dropping
popular techniques for globalizing the forward problemterms involving blocks of W. This results in the following
[11]. Here, we use a simple continuation on Reynolds num-algorithm, in which the BFGS formula is used to update
ber. That is, suppose we want to solve an optimal controlthe quasi-Newton approximation of the reduced Hessian.
problem with a Reynolds number of Re*, for which it is

ALGORITHM 3.2 [Quasi-Newton SQP]. difficult to find a starting point from which Newton’s
method will converge. Instead, we solve a sequence ofk 5 0; u0

s 5 u0
c 5 l0

s 5 0; B0
z 5 I

optimization problems characterized by increasing Reyn-l0
s 5 (A0

ss )2Tg0
s

olds number, beginning with Re 5 0, and incrementingg0
z 5 2(A0

sc )Tl0
s 1 g0

c by DRe. Optimization problem i, with Reynolds numberwhile i gk
z i ? 0 and i ck

s i ? 0
iDRe/Re*, is solved by either Algorithm 3.1 or 3.2, topk

c 5 2(Bk
z )21gz generate a good starting point for problem i 1 1. Algorithm

uk11
c 5 uk

c 1 pk
c 3.1 is initialized with the optimal Lagrange multipliers and

pk
s 5 2(Ak

ss )21(ck
s 1 Ak

sc pk
c ) state and control variables from optimization problem i 2

uk11
s 5 uk

s 1 pk
s 1. Algorithm 3.2 includes the same initializations, but in

lk11
s 5 (Ak11

ss )2Tgk11
s addition takes the initial BFGS approximation to the La-

gk11
z 5 2(Ak11

sc )Tlk11
s 1 gk11

c grangian Hessian matrix to be the Hessian approximation
yk

z 5 gk11
z 2 gk

z at the solution of problem i 2 1. Note that when Re 5 0,
the nonlinear terms drop from the flow equations, andBk11

z 5 Bk
z 1

1
(gk

z)T pk
c

gk
z (gk

z )T 1
1

(yk
z )T pk

c
yk

z (yk
z )T

thus optimization problem (2.12)–(2.13) is an equality-
gk

z 5 gk11
z constrained quadratic programming problem, solvable in

one step. For subsequent problems, there exists a suffi-k 5 k 1 1
end ciently small DRe such that Algorithms 3.1 and 3.2 con-
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FIG. 4.2. Time-dependent streamlines, optimal control, Re 5 500,FIG. 4.1. Time-dependent streamlines, no control, Re 5 500.
t 5 3.5 s.

verge to the solution of optimization problem i 1 1 using both GRG methods at the level of the forward problem:
initial data from problem i (provided we are away from since the GRG methods entail satisfaction of the flow equa-
bifurcation or singular points). tions at each iteration, the forward problem is completely

In the next section we use continuation variants of Algo- solved at each optimization iteration using continuation
rithms 3.1 and 3.2 to solve some model problems in bound- on Reynolds number, i.e., starting with Re 5 0 and incre-
ary control of viscous incompressible flow, and compare menting by DRe until Re* is reached. There is another
their performance to the GRG methods. alternative that is intermediate between the extremes of

GRG (completely solving the flow equations at each itera-
tion, using continuation on Reynolds number) and SQP4. NUMERICAL EXAMPLES
(solving a linearized approximation only). This is to use
the continuation at the level of the optimization problem,In this section we compare Algorithm 3.1 (Newton-SQP,

or N-SQP) and Algorithm 3.2 (quasi-Newton-SQP, or QN- as described at the end of Section 3, in conjunction with
full solution of the flow equations for the current value ofSQP) of the previous section with both a quasi-Newton-

GRG method (QN-GRG) and a steepest descent-GRG
method (SD-GRG). With the QN-GRG method we con-
verge the flow equations fully at each optimization iteration
using a Newton solver, and we employ a BFGS formula
to approximate the Hessian of the objective function.5 SD-
GRG refers to a similar method, except that a search direc-
tion is taken in a direction opposite to the gradient of the
objective function. This method is chosen because of its
popularity in the optimal control literature and since it is
easy to implement. In both GRG cases, the sensitivity
equations are used to compute the objective function gradi-
ent exactly using a direct (as opposed to adjoint) method
(see, e.g., [14] or [15]).

Continuation is applied to N-SQP and QN-SQP as de-
scribed at the end of Section 3. We apply continuation to

FIG. 4.3. Computational domain and boundary conditions, two-5 Recall that with GRG the constraints are eliminated and therefore
the problem is an unconstrained one. dimensional flow around infinite cylinder.
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as the sensitivity equations. In SQP, their presence reflects
the choice of a block elimination (or a null space basis) that
favors ‘‘inverting’’ Ass . The cost of solving these systems
asymptotically dominates an optimization iteration,
whether in SQP or GRG guise, since it is the only step
that is superlinear in ns (all others are linear at worst).
Clearly one would like to perform these linear solves as
cheaply as possible. Our initial desire was to use a Krylov
subspace method, specifically the quasi-minimum residual
(QMR) method, to solve the systems involving Ass and its
transpose, since methods of this type are representative of

FIG. 4.4. Mesh of 680 biquadratic elements, 2829 nodes. large-scale CFD solvers. However, after trying QMR on
the discrete penalty-based Navier–Stokes equations, we
concluded that the equations were too ill-conditioned for
iterative solution to be competitive. Even incomplete LURe. We refer to this method as continuation QN-GRG,
preconditioning was ineffective in allowing convergence inor CQN-GRG. It uses the converged flow solution of the
reasonable time. This no doubt stems from the penaltyprevious optimization iteration as an initial guess to the
formulation, and we expect that a different conclusionvelocity field of the current iteration. We expect its effi-
would have been reached had a mixed formulation (oneciency to be between SQP and GRG.
that included both velocity and pressure) been chosen.Finite element approximation of the continuous problem

Instead, we have chosen the multifrontal sparse LU fac-is achieved with isoparametric biquadratic rectangles in 2D
torization code UMFPACK [4, 5] for solving the systemsand triquadratic hexahedra in 3D. These elements produce
involving Ass and its transpose. UMFPACK provides aerrors in the derivatives of uh of O(h2 1 «) [11]. All integrals
routine for computing the LU factors of a given sparseare evaluated with Gauss–Legendre numerical integration
matrix. Once this has been computed, UMFPACK pro-using a 3 3 3 (33) scheme, with the exception of the
vides further routines for finding the solutions to systemspenalized terms, which are ‘‘underintegrated’’ with a 2 3
involving the triangular factors of a matrix as well as their2 (32) scheme to avoid ‘‘locking’’ [17]. The value of the
transposes. Thus, using UMFPACK, only a single factor-penalty parameter « is taken to be 1027. The flow solver
ization of Ass is required at each iteration of the Newton-has been verified against a standard benchmark, the driven
SQP and quasi-Newton SQP methods; the primary differ-cavity problem. We have chosen a value of 1027 in the
ence between the two methods therefore lies in the numberEuclidean norm of the first order optimality condition (3.2)
of triangular solves each performs (in addition to the com-to terminate optimization iterations. The Reynolds num-
putation of second derivatives). Using a sparse directber step size for continuation, DRe, is in all cases 50.
method of course ultimately limits the maximum size ofSolution of systems involving Ass and its transpose is
problems we can solve, relative to no-fill methods such asat the heart of all five methods. In GRG, these systems

characterize a Newton step on the state equations, as well ILU-QMR. Even though we have found UMFPACK to

FIG. 4.5. Streamlines for steady flow around a cylinder, no control, Re 5 500.
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FIG. 4.6. Streamlines for steady flow around a cylinder, optimal control, Re 5 500.

be very effective at reducing fill, a significant amount of fill In this section we solve optimal control problems for
flows around a cylinder with Reynolds numbers as high asis unavoidable for three-dimensional, higher-order, vector

finite element problems, due to the high average degree 500. However, we use the steady form of the governing
flow equations as constraints; furthermore, our flow modelof nodes in the finite element graph.

To compare the five different optimal control methods, assumes symmetry of the velocity field about the centerline
of the cylinder. In principle, the optimal control problemwe choose a model problem of two-dimensional flow

around an infinite cylinder. Here, we define the Reynolds for flow around a cylinder at Re 5 500 should be con-
strained by the time-dependent version of the Navier–number as
Stokes equations and should not assume symmetry of the
velocity field. However, if one makes two ad hoc assump-Re 5

rD uuy u
e

,
tions—that the optimal velocity field for the time-depen-
dent problem is both steady and symmetric, even if the

where D is the cylinder diameter. Without boundary con- uncontrolled flow is neither—then one ought to be able
trol, the behavior of the velocity field with increasing Reyn- to use the steady Navier–Stokes equations as constraints
olds number is depicted in, for example, [1]. Flow separa- in the formulation of the optimal control problem and cut
tion is evident for Reynolds numbers as low as 10. The the computational domain in half to exploit symmetry.
flowfield remains stationary and exhibits two symmetric Computational complexity is greatly reduced under these
standing eddies up to around Re 5 50. Beyond this range, two assumptions. It is clear that a sufficiently close initial
the wake becomes increasingly unstable and oscillatory, guess to this steady, symmetric optimal control problem
and a vortex street forms in the wake and persists down- would converge to the optimum defined by the unsteady,
stream. Beyond a Reynolds number of about 60, the flow unsymmetric control problem.
is neither symmetric about the cylinder centerline, nor How can these two ad hoc assumptions be verified? In
steady, as assumed by our model. general, the only way is to solve the time-dependent opti-

TABLE 4.1 TABLE 4.2

Number of Optimization Iterations Taken by GRG Timings in Minutes for GRG and SQP Methods on a DEC
3000/700 with 225 MHz Alpha Processor and 512 Mb Memoryand SQP Methods

Re SD-GRG QN-GRG CQN-GRG QN-SQP N-SQP Re SD-GRG QN-GRG CQN-GRG QN-SQP N-SQP

100 3766.75 74.10 41.17 18.37 16.68100 643 23 34 29 13
200 265 30 54 30 14 200 2922.52 168.47 66.18 19.32 17.95

300 4744.93 278.98 86.77 25.02 22.10300 291 35 70 37 15
400 3 45 89 45 18 400 3 462.65 110.52 30.72 26.27

500 3 3 126.98 35.15 30.10500 3 3 102 52 20
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mal control problem (algorithms for which we have not
considered nor implemented), and compare to the optimal
controls computed under the two assumptions. Alterna-
tively, a reasonable heuristic would be: (i) compute the
optimal controls using a steady model throughout the opti-
mization; (ii) apply the resulting optimal controls as bound-
ary conditions in a time-dependent Navier–Stokes solver;
and (iii) conclude that, if the resulting velocity field is
steady and symmetric, the two assumptions are likely valid.

Applying this heuristic, we use a time-dependent
Navier–Stokes code to simulate flow around the cylinder

FIG. 4.8. Velocity field for steady flow around a sphere, Case 1 opti-in the entire domain at Re 5 500. Figure 4.1 shows a
mal control, Re 5 130.snapshot of fluid streamlines at t 5 3.5 s for the uncon-

trolled case (i.e., no-slip boundary conditions on the cylin-
der surface); clearly the flow is unsymmetric about the

Thus, we consider the computational domain and bound-horizontal axis; furthermore, integration in time reveals
ary conditions depicted in Fig. 4.3 and associated meshno steady state. However, if we apply the steady optimal
of Fig. 4.4. The mesh uses 680 isoparametric biquadraticcontrols (i.e., those found by solving the steady optimal
elements, resulting in N 5 2829 nodes and n 5 5658 un-control problem) as boundary conditions at nine equally
known velocity components. Boundary control of the ve-spaced points on the backside of cylinder, and solve using
locity is applied at five equally spaced points on the back-the time-dependent Navier–Stokes code, we obtain the
side of the cylinder. Since each has two velocitystreamlines shown in Fig. 4.2. The streamlines are indeed
components, we have a total of nc 5 10 control variables.symmetric, and further integration in time does not show
Streamlines for the case of no control and Re 5 500 area change in the velocity field. In fact, using a steady Navier–
shown in Fig. 4.5.6 The streamlines are seen to detach nearStokes code we obtain the same velocity field as in Fig. 4.2.
the top of the cylinder, and there is a large recirculationTherefore, while the initial, uncontrolled flow is unsym-
zone behind the cylinder. After solving the optimizationmetric and unsteady, the optimal (with respect to a steady
problem (2.12)–(2.13), the streamlines shown in Fig. 4.6model) flow is both steady and symmetric (from the point
are obtained. The resulting flow resembles a potential flow,of view of a time-dependent solver) for flow around a
and separation is greatly reduced.cylinder at Re 5 500. This motivates using the (steady)

As a comparison of the methods, we solve a sequenceflow model of Section 2, and considering only one-half of
of five optimization problems, corresponding to Re 5 100,the flow domain, thereby reducing the size of the forward
200, 300, 400, and 500, using the five optimization methodsproblem. We stress that we have not proven that there does
described above. Table 4.1 compares the number of optimi-not exist an optimal control computed using an unsteady
zation iterations taken by the five methods. For the contin-model that has a lower value of the dissipation function
uation methods, i.e., CQN-GRG, QN-SQP, and N-SQP,than that of the steady optimal control problem. However,
the numbers reported in the table are the sum of iterationsthis seems unlikely, and it is clear that the steady optimal
across all optimization problems (each corresponding to acontrol is at least a local optimum for the unsteady problem
value of Re).of Re 5 500 flow around a cylinder.

As expected, SD-GRG takes by far the largest number
of iterations. The symbol ‘‘3’’ means that the method
failed to converge to a stationary point, which occurred
with SD-GRG for Re 5 400 and 500, and QN-GRG for
Re 5 500. QN-GRG takes an order of magnitude fewer
iterations than SD-GRG, due to its ability to approximate
curvature of the control variable space. However, CQN-
GRG takes almost twice as many iterations as QN-GRG.
The reason is that the sequence of Reynolds number steps
is ‘‘packed’’ into a single optimization iteration with QN-
GRG, while CQN-GRG ‘‘promotes’’ the continuation on
Re to the level of the optimization problem; thus, these
steps contribute to the number reported in Table 4.1. On

FIG. 4.7. Velocity field for steady flow around a sphere, no control,
Re 5 130. 6 Of course, this is not a physically meaningful flow.
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while the asymptotic costs per iteration of QN-GRG and
N-SQP are the same,7 it turns out that, for the value of
ns we are considering, the lower order terms contribute
meaningfully, and conspire to make N-SQP roughly twice
as expensive per iteration as QN-SQP. Still, the Newton
method does take less time; whether this is worth the
additional effort of implementing second derivatives will
depend on the particular application.

Finally, we demonstrate the capability of the reduced
Hessian SQP optimal control method by solving a three-
dimensional optimal flow control problem. We select a

FIG. 4.9. Velocity field for steady flow around a sphere, Case 2 opti- model problem of flow around a sphere at a Reynolds
mal control, Re 5 130. number of 130, which is the limit of steady flow for this

problem [1]. Again, we exploit symmetry, this time about
two orthogonal planes, to obtain a quarter model of the
sphere. Along the planes of symmetry, zero tangential trac-the other hand, the cost per iteration of CQN-GRG should

be significantly lower than QN-GRG, since each flow solu- tion and zero normal velocity are specified as boundary
conditions. A spherical far-field boundary truncates thetion need only be converged for the current Reynolds

number, and the solver benefits from an initial guess taken flow domain, and on it are imposed traction-free boundary
conditions. The computational domain is meshed into 455from the previous converged value. QN-SQP reduces the

number of iterations by almost 50% over CQN-GRG, since isoparametric triquadratic prism elements, resulting in
N 5 4,155 nodes and n 5 12,465 unknown velocity compo-it liberates the optimizer from having to follow a path

dictated by satisfaction of the flow equations. The result nents. In the absence of boundary velocity control, the
flow separates and forms a standing ring-eddy behind theis that the number of iterations taken by QN-GRG and

QN-SQP are similar. Of course the cost per iteration of sphere, as shown in Fig. 4.7.
We introduce boundary velocity control at distinct pointsQN-GRG (and of CQN-GRG) will be much higher than

QN-SQP, which will be reflected in CPU time. N-SQP lying on six planes aligned with the direction of the flow,
and perpendicular to the surface of the sphere. We consideroffers the best performance from the point of view of

iterations taken, providing on average 2.5 times fewer itera- three cases consisting of one, three, and five holes on each
plane. These correspond to 6, 13, and 25 boundary holes.8tions than the QN methods. Of course, this reduction in

steps taken must be balanced with increased work per The total number of control variables is 16, 33, and 65 for
Cases 1, 2, and 3, respectively.9 The location of the holesiteration associated with N-SQP relative to QN-SQP.

Table 4.2 shows timings of each method for the sequence is evident from Figs. 4.8–4.10. Because of the expense
associated with solving three dimensional flow controlof Reynolds numbers solved. Note that these timings are

in minutes, so the SD method requires several days to find problems, we solve the optimization problem (2.12)–(2.13)
using only the most efficient of the methods consideredan optimal solution, which is unacceptable. The QN-GRG

method offers over an order of magnitude reduction, but here, i.e., the Newton-SQP method. The optimal flow field
on a vertical plane of symmetry aligned with the flow isthe measured times are still on the order of hours. Partially

integrating flow solution with optimization, as in CQN- shown for Case 1 in Fig. 4.8. The figure indicates the magni-
tude and direction of the control velocity at the singleGRG, further reduces CPU time by a factor of about three.

A further factor of three reduction is achieved by fully boundary point appearing on this plane. The application
of suction at six such points has kept the streamlines fromintegrating flow solution with optimization, through the

use of QN-SQP. This results from its requiring only two separating from the sphere, with the result that the standing
ring eddy is largely eliminated. Consider now Case 2, withlinear solves per iteration, against CQN-GRG’s fully con-

verging the flow equations. On the other hand, CPU time twice as many control variables. Figure 4.9 shows the veloc-
ity field corresponding to the optimal control. While thisdecreases only marginally when the N-SQP method is used,

typically between 10 and 15%, even though the number flowfield appears to be an improvement over the uncon-
trolled flow (Fig. 4.7), there is some recirculation immedi-of iterations is significantly lower. This results from the

additional work N-SQP must do at each iteration, chiefly ately downstream of the sphere that was not present in
through the additional right-hand side solves and the con-
struction of the exact reduced Hessian Wz in (3.6). While

7 When sparse LU is used to factor Ass and under the assumption
the cost of constructing Wz is linear in ns , the constant is ns @ nc .
large, since it involves element generation- and assembly- 8 In Cases 2 and 3, there is a shared hole among the six planes.

9 Some velocity components are required to be zero due to symmetry.like finite element computations. The conclusion is that,
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TABLE 4.3 1027. However, in the spirit of SQP, one might choose a
greater value of the tolerance at early iterations, makingResults of Optimal Control of Flow around a Sphere
sure to reduce the tolerance to its target value as the optimi-

No control Case 1 Case 2 Case 3 zation iterations converge. Indeed, in the limit of one New-
ton step on the flow equations per optimization iteration,

No. of control variables — 16 33 65 we essentially recover the reduced SQP method. A related
Optimal dissipation 5.775457 1.729944 1.551276 1.430053

idea is to pose the early optimization iterations on a coarse
mesh, and refine as the optimum is approached; this can
be very effective, as advanced in [16] and [27]. Finally, in
[3], a number of possibilities are defined that are intermedi-

the Case 1 optimal solution. Indeed, we expect that the ate between the extremes of GRG (full flow convergence
Case 2 optimal solution should be at least as good as Case per optimization iteration) and reduced SQP (one state
1, since the former duplicates the holes of the latter while equation Newton step per optimization iteration).
adding several more. However, the optimizer ‘‘sees’’ only We imagine that for larger problems, the cost of fac-
the value of the objective function (and its derivatives), toring the state equation Jacobian matrix will begin to
and in Case 2 the optimal value of the dissipation function display its asymptotic behavior and dominate the lower-
is indeed lower than that of Case 1, as seen in Table 4.3. order terms, leading to increasing efficiency of the Newton
The Case 3 optimal flowfield, shown in Fig. 4.10, resembles method relative to quasi-Newton. However, problem size
Case 2, but as seen in Table 4.3, its dissipation function is cannot continue to grow indefinitely and still allow sparse
lower than that of Case 2, so the result matches our expec- LU factorization. For example, in solving three dimen-
tation.10

sional Navier-Stokes flow control problems on the worksta-
Because of the large computational burden imposed by tion described in Table 4.2, we encountered a limit of about

the three-dimensional problems, we did not conduct care- 13,000 state variables, due to memory. Beyond this size,
ful timings. However, the wall-clock time required (on the where undoubtedly most industrial-scale flow control
workstation described in Table 4.2) in all three cases was problems lie, iterative solvers are required, and it remains
less than a day. The majority of the time undoubtedly was to be seen whether they can be tailored to multiple
spent on factoring the coefficient matrix Ass . righthand sides sufficiently well that Newton SQP can re-

tain its superiority over quasi-Newton SQP.
5. FINAL REMARKS For the largest problems, parallel computing will become

essential. Of course, there is a long history of parallel
Based on the comparison of the previous section, we algorithms and implementations for the forward problem,

conclude that the reduced Hessian SQP methods are over- i.e., Navier–Stokes flow simulation. Algorithms 3.1 and 3.2
whelmingly superior to the GRG methods that are popular are well suited to parallel machines, since the majority of
for optimization problems involving PDEs as constraints, their work involves solution of linear systems having state
offering over an order of magnitude improvement in time equation Jacobians as their coefficient matrix; this is just
required for the optimal flow control problems considered. a step of the forward problem, the parallelization of which
In particular, the methods are so efficient that the optimal is well-understood. Indeed, in [9] we discuss the parallel
control for a two-dimensional flow around a cylinder at implementation of Algorithm 3.2 for a problem in shape
Reynolds number 500 is found in about a half hour on a optimization governed by compressible flows.
desktop workstation. Furthermore, the Newton-SQP
method is capable of solving some three-dimensional opti-
mal flow control problems on the same workstation in less
than a day. Even though the Newton-SQP method takes
significantly fewer iterations, its need to construct exact
Hessians and to solve linear systems that number on the
order of the number of control variables makes it only
marginally more efficient than its quasi-Newton counter-
part, based on our two-dimensional results.

The GRG methods described here represent a strict
interpretation of the GRG idea—at each optimization iter-
ation, the flow equations are converged to a tolerance of

FIG. 4.10. Velocity field for steady flow around a sphere, Case 310 Even if this were not the case, the issue of local vs global optimality
might explain such an apparently anomalous result. optimal control, Re 5 130.
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14. R. T. Haftka, Z. Gürdal, and M. P. Kamat, Elements of StructuralOrozco, Larry Biegler, and James Antaki for various discussions and
Optimization (Kluwer Academic, Dordrecht/Norwall, MA, 1990).suggestions related to this work.

15. E. J. Haug and J. S. Arora, Applied Optimal Design (Wiley–
Interscience, New York, 1979).REFERENCES

16. W. P. Huffman, R. G. Melvin, D. P. Young, F. T. Johnson, J. E.
Bussoletti, M. B. Bieterman, and C. L. Hilmes, Practical design and1. G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge
optimization in computational fluid dynamics, in Proceedings of 24thUniv. Press, Cambridge, UK, 1967).
AIAA Fluid Dynamics Conference, Orlando, Florida, July 1993.

2. L. T. Biegler, J. Nocedal, and C. Schmid, A reduced Hessian method
17. T. J. R. Hughes, W. K. Liu, and A. Brooks, Finite element analysisfor large-scale constrained optimization, SIAM. J. Optim. 5, 314

of incompressible viscous flow by the penalty function formulation,(1995).
J. Comput. Phys. 30, 1 (1979).

3. E. J. Cramer, J. E. Dennis, P. D. Frank, R. M. Lewis, and G. R.
18. M. S. Khaira, G. L. Miller, and T. J. Sheffler, Nested Dissection: AShubin, Problem formulation for multidisciplinary optimization,

Survey and Comparison of Various Nested Dissection Algorithms,SIAM J. Optim. 4, 754 (1994).
Tech. Rep. CMU-CS-92-106R, Carnegie Mellon University, 1992.

4. T. A. Davis, Users’ Guide for the Unsymmetric Pattern Multifrontal
19. F. S. Kupfer and E. W. Sachs, A prospective look at SQP methodsPackage (UMFPACK), Tech. Rep. TR-93-020, CIS Dept., University

for semilinear parabolic control problems, in Optimal Control ofof Florida, Gainesville, FL, 1993.
Partial Differential Equations, edited by K. Hoffman and W. Krabs

5. T. A. Davis and I. S. Duff, An Unsymmetric Pattern Multifrontal (Springer-Verlag, Berlin/New York, 1991), p. 145.
Method for Sparse LU Factorization, Tech. Rep. TR-93-018, CIS

20. P. Moin and T. Bewley, Feedback control of turbulence, App. Mech.
Dept., University of Florida, Gainesville, FL, 1993.

Rev. 47, S3 (1994).
6. C. Farhat and P.-S. Chen, Tailoring domain decomposition methods 21. C. E. Orozco and O. Ghattas, Massively parallel aerodynamic shape

for efficient parallel coarse grid solution and for systems with many optimization, Comput. Syst. Eng. 1–4, 311 (1992).
right hand sides, in Domain Decomposition Methods in Science and

22. C. E. Orozco and O. Ghattas, Optimal design of systems governedEngineering, Contemporary Mathematics, Vol. 180 (American Mathe-
by nonlinear partial differential equations, in Fourth AIAA/USAF/matical Society, Providence, RI), 1994.
NASA/OAI Symposium on Multidisciplinary Analysis and Optimiza-

7. D. Gabay, Reduced Quasi-Newton methods with feasibility improve- tion, AIAA, 1992, p. 1126.
ment for nonlinearly constrained optimization, Math. Programming

23. L. Prandtl and O. G. Tietjens, Applied Hydro- and Aeromechanics
Study 16, 18 (1982).

(Dover, New York, 1934), p. 81.
8. M. Gad-el-Hak, Flow control, Appl. Mech. Rev. 42, 261 (1989).

24. U. Ringertz, Optimal Design of Nonlinear Shell Structures, Tech. Rep.
9. O. Ghattas and C. E. Orozco, A parallel reduced Hessian SQP method FFA TN 91-18, The Aeronautical Research Institute of Sweden, 1991.

for shape optimization, in Multidisciplinary Design Optimization: 25. U. Ringertz, An algorithm for optimization of nonlinear shell struc-
State-of-the-Art, edited by N. Alexandrov and M. Hussaini (SIAM, tures, Int. J. Numer. Methods Eng. 38, 299 (1995).
Philadelphia, 1997), p. 133.

26. Y. Xie, Reduced Hessian Algorithms for Solving Large-Scale Equality
10. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization Constrained Optimization Problems, Ph.D. thesis, University of Colo-

(Academic Press, New York, 1981). rado, Boulder, Department of Computer Science, 1991.
11. M. D. Gunzburger, Finite Element Methods for Viscous Incompress- 27. D. P. Young, W. P. Huffman, R. G. Melvin, M. B. Bieterman, C. L.

ible Flows (Academic Press, San Diego, 1989). Hilmes, and F. T. Johnson, Inexactness and global convergence in
12. M. D. Gunzburger, ed., Flow Control, IMA Volumes in Mathematics design optimization, in Proceedings of the 5th AIAA/NASA/USAF/

and Its Applications, Vol. 68. (Springer-Verlag, Berlin/New York, ISSMO Symposium on Multidisciplinary Analysis and Optimization,
Panama City, Florida, September 1994.1995).


